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ABSTRACT

This note describes a formal statistical approach to
testing for a regime shift based on population time
series for a system of interacting species or groups.
Under this approach, a regime shift is said to occur if
the system switches abruptly from varying around one
locally stable steady state to varying around another.
This allows the problem to be formulated as testing for
a changepoint in a vector autoregressive process. The
test is illustrated using data from the North Sea cov-
ering the period 1963–97.
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INTRODUCTION

This note is concerned with the problem of detecting
a regime shift in a collection of ecological time series.
This problem has attracted considerable recent
attention in the oceanographic literature (e.g. Francis
et al., 1998; McGowan et al., 1998; Hare and
Mantua, 2000; Reid et al., 2001). As Hare and
Mantua (2000) pointed out, there is no common
definition of a regime shift, nor is there a single
method for detecting one. From a statistical point of
view, the methods that have been proposed are
ad hoc, in the sense that they are not based on a
statistical model of the data. This poses a particular
problem to the assessment of the significance of a
possible regime shift identified by these methods. For
example, Rudnick and Davis (2003) showed that the
method proposed by Hare and Mantua (2000) for
detecting a regime shift is sensitive to positive serial
dependence in the time series.

The goal of this note is to propose a formal statis-
tical approach to detecting a regime shift. Briefly,

under this approach, a regime shift is defined as an
abrupt shift in an ecosystem from one locally stable
steady state to another locally stable steady state. To
detect such a shift, we model the time series as a
particular vector-valued stochastic process and test for
a shift in the mean at an unknown time. The test is
based on a combination of model fitting and a para-
metric bootstrap. We illustrate this approach using
data from the North Sea ecosystem over the period
1963–97.

In related statistical work, Box and Tiao (1975)
proposed the method that has come to be called
intervention analysis for identifying a shift in the mean
of a scalar-valued time series. Intervention analysis was
extended to the case of vector-valued time series by
Abraham (1980). The main difference between inter-
vention analysis and the method proposed in this note
is that, in intervention analysis, the time of the
intervention (or regime shift) is assumed to be known,
while one of the main goals of the method proposed
here is to estimate the time of the regime shift.

METHOD

Consider a system of k potentially interacting species.
Let the random variables X1t, X2t,…, Xkt be the
abundances (or log abundances) of these species in
period t. A general stochastic model of the dynamics of
this multi-species system is:

X1t ¼ F1ðX1;t�1;X2;t�1; . . . ;Xk;t�1Þ þ e1t

X2t ¼ F2ðX1;t�1;X2;t�1; . . . ;Xk;t�1Þ þ e2t

. . .

Xkt ¼ FkðX1;t�1;X2;t�1; . . . ;Xk;t�1Þ þ ekt

ð1Þ

where F1, F2,…, Fk are unknown non-linear functions
and e1t, e2t,…, ekt are normal process errors with mean
0 and unknown k-by-k variance matrix R. This model
can be compactly written in matrix notation as

Xt ¼ FðXt�1Þ þ et ð2Þ

where Xt ¼ (X1t,X2t,…,Xkt)¢, F is now a vector-valued
function, and et is an k-variate normal process error
with mean vector 0 and variance matrix R. We will
assume the error process is serially independent. The
extension to the case where this process is serially
dependent is discussed briefly in the final section.
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Let the vector l satisfy:

l ¼ FðlÞ ð3Þ
That is, l is a steady state of the deterministic system
corresponding to the stochastic model (2). The
dynamics of Xt in the neighborhood of l is approxi-
mated as

Xt ffi lþ AðXt�1 � lÞ þ et ð4Þ

where the k-by-k matrix A ¼ ½ @Fi

@Xj;t�1
�l is the (unknown)

Jacobian of F. The model (4) is called a first-order vector
autoregressive [VAR(1)] process (Reinsel, 1997). The
process is stationary provided all of the eigenvalues of A
are less than 1 in modulus. This is the same condition for
the local stability of l in the corresponding determin-
istic model (e.g. May, 1973).

We will say that a regime shift occurs during the
period of observation t ¼ 1, 2, …, N if the system
switches from following one stationary VAR(1) pro-
cess to following another at some unknown time m
during this period. This possibility is expressed in the
model:

Xt ffi l1 þ A1ðXt�1 � l1Þ þ eð1Þt 1 � t � m

l2 þ A2ðXt�1 � l2Þ þ eð2Þt m < t � n
ð5Þ

where the k-variate process errors eð1Þt and eð2Þt have
means 0 and variance matrices R1 and R2 respectively.
Under this formulation, a regime shift can be detected
by testing the null hypothesis Ho : m ¼ n that the
data follow a single VAR(1) process against the
alternative hypothesis H1 : 1 < m < n that the data
reflect a shift from one VAR(1) process to another at
some unknown changepoint m.

It is natural to test Ho against H1 using the likeli-
hood ratio (LR) statistic (e.g. Azzalini, 1996). The LR
statistic K is defined as minus twice the difference of
the maximized value of the log likelihood under Ho

and the maximized value of the log likelihood under
H1. To form K, it is necessary to fit the model (4) by
the maximum likelihood (ML) under both Ho and H1

with the restriction that the fitted models are sta-
tionary. Conditional on the first observation X1, the
log likelihood function for N observations from the
VAR(1) model in (3) is given by:

log Lðl;A;RÞ ¼ � n � 1

2
log jRj � 1

2
traceðR�1

Xn

t¼2

a0tatÞ

ð6Þ
where

at ¼ ðXt � lÞ � AðXt�1 � lÞ ð7Þ
Ansley and Kohn (1986) provided a reparameteriza-

tion of the VAR(1) model to facilitate the maxim-

ization of this log likelihood under the stationarity
restriction and a program that performs this maxim-
ization is available in the Numerical Algorithms
Group (NAG) library of FORTRAN routines. Even
without the stationarity restriction, fitting a VAR(1)
model by ML is computationally demanding. As
computational economy is particularly important in
the simulation procedure described below for assessing
the significance of the observed value of K, a practical
approach is to fit the VAR(1) models by least squares
(LS) and to resort to ML estimation under the sta-
tionarity restriction only if the model fitted by LS is
non-stationary. The VAR(1) model can be fit by LS
using the MATLAB package described in Schneider
and Neumaier (2001). The LS estimates are asymp-
totically equivalent to the ML estimates and used in
their place in forming K. Finally, although it is
standard practice in fitting a VAR model to condition
on X1, this is not strictly necessary and a term can be
added to the log likelihood in (6) representing the
contribution of the initial observation. Because
unconditional ML estimation is not equivalent to LS
estimation, this increases the computational burden.
Fortunately, in most cases, the unconditional and
conditional ML estimates are extremely close.

Because the changepoint m is unknown, fitting
under H1 involves fitting the model for all possible
values of m and choosing the fit with the largest
overall likelihood. For technical reasons, this means
that the standard distributional results for K do not
apply. Instead, the significance of the observed value
of K can be assessed through the following simulation
procedure. Simulate a k-variate time series of length N
from the model fitted under Ho. Fit the null and
alternative models to the simulated data and find the
value of K. Repeat the procedure a large number of
times and estimate the significance level (or P-value)
by the proportion of simulated series for which the
value of K is larger than that for the actual data. This
is an example of a parametric bootstrap test (Efron and
Tibshirani, 1994).

A limitation of this test is that to fit a unique least
squares estimate of the k-by-k matrix A requires at
least k + 2 observations. This is a minimal require-
ment and, needless to say, like all statistical methods,
this one will be more powerful the longer the time
series. As a result of this limitation, it is not practical
to apply this test to a large number of time series as in
Hare and Mantua (2000). The main use of the
VAR(1) model is actually not in the estimation of m,
but in the assessment of significance. To assess
the significance of the results of any method for
detecting a regime shift, it is necessary to account for
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dependence within and between the time series. The
VAR(1) model provides a parsimonious description of
this dependence.

AN ILLUSTRATION

As an illustration, the test outlined in the previous
section was applied to k ¼ 5 annual biological time
series from the North Sea covering the N ¼ 35 year
period 1963–97. The time series used in this analysis
were: (1) average phytoplankton color; and (2) total
copepod abundance from the Continuous Plankton
Recorder (CPR) and estimates of spawning stock
biomass (SSB) for (3) cod (Gadus morhua); (4) had-
dock (Melanogrammus aeglefinus); and (5) herring

(Clupea harengus). This ordering of the variables will
be maintained throughout the subsequent discussion.
The first two time series are available at the website
of the Sir Alister Hardy Foundation for Ocean Sci-
ence (SAHFOS) and the last three are available at
the UK website of the Department for Environment,
Food, and Rural Affairs (DEFRA). These time series
are shown in Fig. 1. We recognize that the selection
of time series for inclusion in this kind of analysis is
no small issue. However, as our primary goal here is
illustrative, this selection, which was intended to
cover a range of trophic levels, seems reasonable.
Also, because the delay between spawning and
recruitment is greater than 1 yr for cod and haddock,
the VAR(1) model may not capture fully the
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Figure 1. Observed values and fitted values under the null (solid) and alternative (dashed) hypotheses for (a) phytoplankton
color; (b) total copepods; (c) cod; (d) haddock; and (e) herring. The fitted values for the two models are nearly indistinguishable.
The vertical dotted line represents the year of the estimated changepoint. Also shown in (f) is the log likelihood for fitting the
alternative model for different values of the changepoint.
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dynamics of these species. We will return to these
points in the final section.

The least squares estimate of the mean vector l
under the null hypothesis of no regime shift is
(1.42.269.4115.9806.6)¢. The fitted values to the five
time series under the null hypothesis are also shown in
Fig. 1. The dominant eigenvalue of the fitted model has
modulus 0.90, so the model is stationary, and the value
of the maximized log likelihood is )243.1. The value of
the maximized log likelihood is shown in Fig. 1 for fit-
ting the data under the alternative hypothesis of a re-
gime shift for different values of the changepoint m. The
log likelihood has a maximum value of )218.3, which
occurs for m ¼ 1987. The log likelihood for 1988 is
only slightly lower. For an estimated changepoint
in 1987, the least square estimates of the mean
vectors l1 and l2 are (1.32.3154.9267.0717.3)¢ and
(1.52.275.7145.6696.4)¢, respectively. In relative terms,
the greatest difference between l1 and l2 are reductions
of nearly 50% in mean cod and haddock SSB. The fitted
values from this model are also shown in Fig. 1. The
dominant eigenvalue of the first model has modulus 0.90
and the dominant eigenvalue of the second model has
modulus 0.87.

The value of the LR statistic K for testing the null
hypothesis of no regime shift is 49.7. Of 500 bootstrap
samples simulated from the model fitted under the null
model, 85 had values of K in excess of 49.7, for an
estimated significance level of 0.17 with standard error
of around 0.02. By conventional standards of signifi-
cance, the data do not provide convincing evidence
against the null hypothesis. Because it is based on
different data and methods, this result is not directly
comparable with those of previous studies. Despite
these differences, Reid et al. (2001) selected 1988 as
the most likely time for a regime shift in the North
Sea. This is in good agreement with the results pre-
sented here. However, Reid et al. (2001) did not assess
the significance of this change.

DISCUSSION

The purpose of this note has been to describe and
illustrate a method for detecting a regime shift in
population time series. Although this is certainly not
the last word on this topic, we believe that the method
described here has two distinct advantages over
existing methods. First, it relies on the standard model
of ecosystem dynamics to provide a statistical model
on which a formal test can be based. Second, it relies
on standard statistical theory to provide such a test.
From a statistical perspective, two key features of the
method are the allowance for serial dependence in the

vector of population time series and the accounting for
the selection of the most likely changepoint in the
assessment of significance. In keeping with the litera-
ture in this area, the method proposed here is based on
the definition of a regime shift as an abrupt change in
steady state. As a practical matter, the performance of
the method is unlikely to be disturbed by a transition
period that is short in relation to the length of the
observation period. However, if the definition is
broadened to allow for a longer transition period, then
it would be necessary to consider alternatives.

The basic method can be extended in a number of
directions. Here, we mention four. First, the dynamics
of one or more of the component series may involve
lags greater than one period. For example, as noted, if
there is a delay of s years between spawning and
recruitment, then the SSB in year t will depend on
SSB both in years t ) 1 and t ) s. This can be
accommodated by extending the order of the VAR
model. Second, to the extent that the error process et

reflects environmental forcing, it might be expected to
exhibit positive serial dependence. The VAR(1)
model can also be extended to accommodate this
situation. For example, if et itself follows a VAR(1)
model, then Xt is said to follow a vector autoregres-
sive-moving average (VARMA) process of order 1 in
the autoregressive part and order 1 in the moving
average part (Reinsel, 1997). A VAR model of higher
order can also be extended in this way. Third, the
model can be modified to require the properties of
the error process to be the same before and after the
regime shift, so that R1 ¼ R2. Fourth, the model can
be extended to allow for the possibility of more than
one regime shift. In general, allowing for multiple
shifts requires some delicacy. For example, to avoid the
presumably unrealistic case in which 2 regime shifts
occur in close proximity, it may be necessary to impose
a lower bound on permissible interval between the
times of the shifts. Unfortunately, extensions of these
kinds can introduce a large number of additional
parameters, further limiting the applicability of the
method to relatively short time series. Moreover, the
great computational advantage of fitting VAR models
by least squares is lost with VARMA models or even
VAR models with special structure.

Finally, although a detailed discussion is beyond the
scope of this note, a central issue in this kind of work is
the selection of time series for inclusion in the ana-
lysis. One question is whether to include – as some
studies have done – both biological and physical time
series in the analysis. In our view, when interest cen-
ters on detecting an ecological regime shift, it is better
to include only biological time series, although
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relating the results of the analysis to variations in the
physical environment may be important. A second
issue concerns the choice of biological time series. In
this note, a regime shift has been defined as a shift in
the steady state of an ecological system. The approach
proposed here for detecting such a shift focuses directly
on time series of abundance. As a shift in steady state
abundance may be an indirect effect of a more direct
ecological change (e.g. a shift in the stock–recruit-
ment relationship of a fish stock), in some situations it
may make sense to search for the direct effect itself.
However, this presupposes some knowledge of the
likely change.
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